Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(9): e202300904, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550247

RESUMO

A chemical investigation of K. heteroclite led to isolation of two new dibenzocyclooctadienes (1 and 2) together with 14 known compounds (3-16) by using multiple chromatographic techniques. New compounds (1 and 2) were obtained and identified by spectroscopic methods (HR-ESI-MS, 1D and 2D NMR, and ECD) as well as by comparison of their experimental data with those reported in the literatures. All the isolates were evaluated for their ability to modulate TNF-α production in lipopolysaccharide (LPS) stimulated RAW264.7 cells. Among them, compound 5 displayed the most inhibition against tumor necrosis factor (TNF)-α production with IC50 value of 6.16±0.14 µM. Whereas, compounds (1, 3, and 6) showed the significant inhibition (IC50 values ranging from 9.41 to 14.54 µM), and compounds (2, 4, 9, 10, 13, 15, and 16) exhibited moderate inhibition (IC50 values ranging from 19.27 to 40.64 µM) toward TNF-α production, respectively.


Assuntos
Kadsura , Lignanas , Kadsura/química , Fator de Necrose Tumoral alfa , Lignanas/farmacologia , Lignanas/química , Anti-Inflamatórios/farmacologia , Fenóis , Estrutura Molecular
2.
Metabolites ; 13(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837867

RESUMO

The objective of this study is to describe the separation and identification of one new phenolic and 19 known compounds from Vitex rotundifolia. Their structures were determined based on spectroscopic (NMR, CD, and MS) data analysis or Mosher's method, and were compared with those reported in the literature. These isolates were then evaluated for their anti-inflammatory and antioxidant activities based on the inhibition of nitric oxide (NO) and interleukin (IL)-8 production in lipopolysaccharide (LPS)-stimulated cells (RAW264.7 and HT-29) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, respectively. In the NO assay, compounds 12-14 showed strong inhibition with compounds 10 and 15 displaying significant inhibition. In the IL-8 assay, compounds 8, 9, 13, 14, 19, and 20 exhibited potential to inhibit IL-8 production and other compounds displayed moderate inhibition. An in silico docking approach also revealed strong binding affinities for protein-ligand complexes of these active compounds against IL-8 production. The docking results were correlated with the experimental data of the IL-8 assay. Thus, these active compounds should be considered as candidates for further in vivo studies. This study implies the potential of new and active chemicals isolated from V. rotundifolia and provides evidence to support the development of active fractions and constituents into functional products targeting inflammatory diseases the future.

3.
Int Immunopharmacol ; 115: 109610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36571918

RESUMO

Ilex rotunda Thunb. has been used in traditional medicine for treating rheumatoid arthritis, relieving pain and indigestion. In the present study, we isolated three new caffeic acid benzyl ester (CABE) analogs (1-3) along with eight known compounds (4-11) from the extract of I. rotunda. The absolute configuration of α-hydoxycarboxylic acid in 1 was assigned with the phenylglycine methyl ester (PGME) method. We further investigated their anti-inflammatory activities in lipopolysaccharide (LPS)-induced macrophages (RAW 264.7) cells. Among them, compounds 2-4, 7, 8, 10, and 11 suppressed the production of nitric oxide (NO), pro-inflammatory mediators. It was additionally confirmed that the anti-inflammatory effect of active compound 2 was through significant suppression of cytokines, including interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and IL-8 in LPS-stimulated RAW 264.7 cells and colon epithelial (HT-29) cells. Western blot analysis revealed that compound 2 decreased the LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and phosphorylated extracellular regulated kinase (pERK)1/2. The following molecular docking simulations showed the significant interactions of compound 2 with the iNOS protein. These results suggested that the compound 2 can be used as potential candidate for treating inflammatory diseases such as inflammatory bowel disease (IBD).


Assuntos
Ilex , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Ilex/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7 , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
4.
Antioxidants (Basel) ; 11(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36290712

RESUMO

Ilex rotunda Thunb., has been used to treat common cold, tonsillitis, and eczema. It is also a source of antioxidants. However, information regarding its antioxidative phytochemical composition is still incomplete and limited. In this present study, we initially determined DPPH radical scavenging activity of the extracts of I. rotunda fruits, twigs, and leaves. Among them, the twig extract exhibited a potential of antioxidant capacity. Based on antioxidant effect guided experiments, extraction condition using 80% EtOH was then optimized. DPPH and ABTS radical scavenging assays were also performed for fractions. The n-butanol fraction showed the highest antioxidant effect. Using chromatographic methods, eight marker compounds (1-8) were further isolated. Their structures were determined by spectroscopic and mass data. Method validation was employed to quantitate contents of these eight marker compounds. Subsequently, the HPLC-DPPH method was used to evaluate the contribution of certain compounds to total antioxidant activity of the extract. Lastly, parallel artificial membrane permeability assay for blood-brain barrier (PAMPA-BBB) was applied to investigate brain-penetrable antioxidants from I. rotunda extract. As a result, compound 7 (4,5-dicaffeoylquinic acid) showed significant antioxidant activity and penetration across the BBB via transcellular passive diffusion. Our findings suggested that compound 7 can be used as a therapeutic potential candidate in natural product-based central nervous system (CNS) drug discovery.

5.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326104

RESUMO

An extraction method using 80% EtOH was selected and applied to obtain the total extracts from leaves, flowers, fruits, twigs, and roots of Vitex rotundifolia L.f. based on the antioxidant activity-guided experiments. Subsequently, total extract from each part of V. rotundifolia was successfully partitioned into fractions, which were evaluated for their antioxidant and anti-inflammatory properties via DPPH, ABTS, and NO assays, respectively. Among them, EtOAc (E) and n-butanol (B) fractions showed the potent antioxidant activity and the methylene chloride (MC) fractions of roots, leaves, and fruits that exhibited strong scavenging activity on DPPH and ABTS radicals. In the anti-inflammatory assay, n-hexane (H) and MC fractions of leaves potently inhibited NO production in LPS-stimulated RAW264.7 cells, followed by E fractions derived from fruits, flowers, twigs, and roots, along with B fractions from flowers and twigs. Additionally, a comprehensive HPLC-decoupled MS profiling was established and validated using seven isolated marker compounds (1-7), which were identified by analysis of their UV, NMR, and MS data. The established method was also applied for quantification of these marker compounds in each organ collected from different locations, and to assess their antioxidant capacity by a screening DPPH-HPLC method. Principal component analysis suggested the botanical organs from this plant correlated with the marker compound contents in association with bioactivity. The study results are a prelude to further studies involving the active fractions and provide a comprehensive insight into the functional products of this plant against oxidative diseases.

6.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299601

RESUMO

Species of Podocarpus are used traditionally in their native areas for the treatment of fevers, asthma, coughs, cholera, chest pain, arthritis, rheumatism, and sexually transmitted diseases. To identify natural products having efficacy against inflammatory bowel disease (IBD), we identified a new, 16-hydroxy-4ß-carboxy-O-ß-D-glucopyranosyl-19-nor-totarol (4) together with three known diterpenoids from P. macrophyllus. Furthermore, all the extracts, fractions, and isolates 1-4 were investigated for their anti-inflammatory effects by assessing the expression on nitric oxide (NO) production and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 and HT-29 cells. Among them, nagilactone B (2) exhibited a potent anti-inflammatory effect against NO production on RAW 264.7 cells; therefore, nagilactone B was further assessed for anti-inflammatory activity. Western blot analysis revealed that nagilactone B significantly decreased the expression of LPS-stimulated protein, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and phosphorylated extracellular regulated kinase (pERK)1/2. In addition, nagilactone B downregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 levels in LPS-induced macrophages and colonic epithelial cells. To our best knowledge, this is the first report on the inhibitory effect of nagilactone B (pure state) and rakanmakilactone G against NO production in LPS-stimulated RAW 264.7 cells. Thus, diterpenoids isolated from P. macrophyllus could be employed as potential therapeutic phytochemicals for IBD.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/tratamento farmacológico , Lipopolissacarídeos/imunologia , Traqueófitas , Animais , Anti-Inflamatórios/isolamento & purificação , Diterpenos/isolamento & purificação , Células HT29 , Humanos , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Camundongos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7 , Traqueófitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...